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Abstract 

We explore the current capabilities of the recently re- 
leased Myricom X2OOO witch, using MPICH over the GM 
communication layer; for message passing on a 2-way SMP 
Pentium III Beawulf-Class cluster: Performance measure- 
ments on the network indicate that data transfer rates 
of appmximatety 190 Mbyteds for ping-pong tests, and 
24OMbyteds forfill-duplex exchange tests, can be achieved 
for messages as large as 32 Mbytes. The perf onruutce varies 
depending on how processors communicate; either within 
an SMP node or across nodes. Results with the network for 
parallel unstructured adaptive refinement of 3 0  tetrahedral 
meshes show noticeable perfonnance improvement when 
compared to lOOBaseT Ethernet. Furthemre, when com- 
pared to traditional systems such as the SGI Origin 2000, 
the combination of this fast network with high pet$ormunce 
SMP processors demonstrate that Beowulf-Clusters com- 
pare favombty with such system-even when communica- 
tion intensive applications are used. 
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1. Introduction 

Beowulf-Class clusters have demonstrated that scalable 
parallel computing can be achieved, at low cost, through the 
use of commodity off-the-shelf (COTS) parts. The COTS 
approach allows one to configure a system using the latest 
hardware and software that is available, and affordable, at 
the time. As time goes by, one has the option to reconfig- 
ure a system as new products are announced and released. 

Many cluster components may be freely available, such as 
system software, while others, including advanced micro- 
processors, are constantly under competitive pricing pres- 
sures to remain affordable. 

The network interconnect, however, allows great flexibil- t 

ity regarding the communication performance one expects 
verses the amount one is willing to pay. Although lOOBaseT 
Ethernet cards are not expensive the -1 1 MByteds upper 
bound can hinder the performance of clusters containing 
m a y  fast S M P  processors with large amounts of main mem- 
ory. (It is interesting to observe how improvements in sys- 
tem software and microprocessor performance bring added 
pressure to consider fast networking to maintain a balanced 
system.) 

Within the JPL High Performance Computing Group we 
have a series of clusters, one of which is quite powerful. 
This cluster contains 26 compute nodes, and one front end 
node, of dual-processor 800 MHz Pentium m(sa total of 
54 processors in all. Each node has 2 GBytes of RAM 
available giving a system with 104 GBytes of main mem- 
ory with 41.6 GFlopc; of computation. We recently replaced 
our 3COM SuperStackU switch and lOOBaseT Ethernet net- 
work with Myricom’s new 32-port X2000 networking hard- 
ware. More details about Myricom’s technology including 
architecture specifications, software, algorithms, and prod- 
ucts are available at their web site and elsewhere [l, 61. 

We will explore our experiences and evaluate the per- 
formance impact this hardware introduces for our system. 
The results will be compared to experiences before the new 
network was introduced, and to a more traditional system 
(the SGI Origin 2000) for adaptive meshing simulations that 
typically stress CPU, memory, and communication perfor- 
mance. 
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Figure 1. Repartitioning and migration of artery mesh segment using PYRAMID AMR Library. 

2. Characterizing Communication-Intensive 
Applications 

Many physics-based numerical applications are fun- 
damentally irregular, meaning that the solution process 
is largely determined at run-time and the communica- 
tion requirements are non-uniform, although generally pre- 
dictable. Parallel adaptive methods fall into this category 
and software for these techniques require very high perfor- 
mance systems for large problems. 

We have developed software to handle parallel unstruc- 
tured adaptive mesh refinement for finite element applica- 
tions [S, 7. This tool allows large triangular and tetrahe- 
dral meshes to be loaded, adaptively refined with automatic 
mesh quality control, load balanced, and migrated among 
the processors using high level object-based library com- 
mands. Since parallel adaptive mesh refinement potentially 
involves working with many millions of elements great ef- 
fort is used to minimize communication and to ensure that 
transmitted messages are as large as possible. On a clus- 
ter, managing communication becomes even more impor- 
tant since applications may use networks that are signifi- 
cantly slower than those found on most traditional super- 
computing systems. 

Figure 1 shows a segment of a large tetrahedral artery 
blood flow mesh segment. The original geometry was pro- 
vided by Taylor et. al [8] and the initial mesh was generated 
by the Scientific Computation Research Center at Rensse- 

laer Polytechnic Institute [2]. The mesh contains 1.1 million 
elements where our PYRAMID adaptive mesh refinement 
library was used for repartitioning, load balancing, and mesh 
migration. Processor partitioning is illustrated by color. 

Figure 2. Performance for mesh repartitioning and 
migration of the artery mesh. 

Performance comparisons for this problem using 
lOOBaseT Ethernet and Myrinet on the cluster, as well 
as the NUMA architecture of the SGI 02K, indicate the 
benefit of Myrinet, shown in figure 2. This is largely 



a communication-based benchmark where a variety of 
message sizes are used. As we will see, however, the 
performance tradeoffs vary based on the problem solved. 
Nevertheless, this initial benchmark indicates that the Be- 
owulf cluster can compete on par with traditional systems 
even for communication intensive applications. 

3. Configuring MPICH-GM under Linux 

Although cluster technology has generally stabilized, 
when new components are integrated into an existing system 
problems can develop. At this date, our Beowulf cluster is 
based on Redhat Linux 6.2 with Kernel version 2.4.4 using 
MPICH-GM version 1.2..7 with patches. Initially, however, 
our hardware vendor installed kernel version 2.2.x which 
did not support the features of our system. Also, Myri- 
com's MPICH-GM version 1.2..5, based on MPICH 1.2.0, 
had problems that were not immediately known. This in- 
troduced delays, but fortunately Myricom support has been 
very active in working with us to address and correct prob- 
lems. 

Regarding the initial kernel installation we found that 
the vendor did not realize that certain configuration options 
required by our system were not available. In fact, the 
highmem region of memory was not addressable so we ex- 
perienced unnecessary memory swapping that also inter- 
fered with the memory requirements of the GM communica- 
tion layer. Fortunately, most of the defaults for kernel ver- 
sion 2.2.4 satisfied our system requirements so only a few 
extra details required attention. This included specifying 
that we had SMP processors, that the amount of real memory 
was between 1-4MB, and that the highmem region of mem- 
ory should be addressable. 

There are a number of ways to configure MPICH-GM 
for communication among MPI processes. If shared mem- 
ory support is not specified then messages are sent over 
the Myrinet. If the -shared-memory-support and 
--disable-direct-copy options are used then SMP 
communication with a 2-copy protocol is used. Alter- 
natively, if only -shared-memory-support is used, 
where direct-copy is enabled by default, then a 1-copy SMP 
protocol is used. There were a number of problems re- 
lated to these configuration options and they are sti l l  be- 
ing addressed. Nevertheless, using various patches from 
Myricom, a good combination of stability and perfomwe 
is achieved with shared memory support enabled and di- 
rect copy disabled causing a 2-copy protocol to be in- 
voked. Other configurations generate errors reported by 
the -gm,sent ( ) routine, or in user programs, on occa- 
sion. For architectures that support memory registration 
the -gm-can-register-memory option will allow a 
registration/z.ero-copy mode. This option did not currently 
give a performance improvement for our simulations and we 

Figure 3. MBytesls transmitted in ping-pong tests 
between two processors. 

experienced less stability. 
Figure 3 shows the results of a network ping-pong test 

for the Myrinet installation compared to previous results for 
lOOBaseT and the SGI Origin 2000. Incidentally, the MPI 
implementation on the Origin uses the global shared mem- 
ory to implement message passing. When a processor re- 
quires data the packets are sent over the CrayLink so the 
latency to access memory becomes a critical part of a per- 
formance metric on this machine in addition to good cache 
management. 

The improvement for our cluster is significant where 
neighbor processors that are not on the same board are used. 
This certainly had an impact on the artery mesh migration 
problem in figure 2. While we are very close to peak speed 
for lOOBaseT for MPICH implemented over GM we are 
only at about 54% of the peak speed of the GM communica- 
tion layer alone (reported rated at 2.8Gbitsh). The average 
latency is still quite low, about 181.1 sec. for processors that 
share a CPU board and 37p sec. for processors across CPU 
boards. You may notice a crossover point between the SGI 
02K and Myrinet communication performance. The result 
in figure 3 uses processors across CPU boards. 

Others have reported that there can be an overhead asso- 
ciated with MPICH over GM, and that on some systems the 
MPI implementation can take away as much as 23% of the 
peak bandwidth of Myrinet [3]. Nevertheless, other bench- 
marks have indicated that 149 MBytes/s with lop latency 
have been achieved with older versions of the Myrinet hard- 
ware [6], so our new equipment does show a modest im- 
provement over these results for MPICH over GM. 



Figure 4. MBytes/s transmitted in ping-pong tests between two processors on the same board, and across boards, when 
using both the ch-gm and chp4 devices under MPICH. 

4. Evaluating Functionality and Performance 

Our primary interest is to examine the effect of a network 
upgrade for a communication intensive application. How- 
ever, before examining how the X2000 hardware performs 
on our adaptive meshing simulations we should take a closer 
look at network performance in an S M P  environment. Ad- 
ditionally, since the GM layer is not completely stable at this 
time, one may also want to allow Myrinet to emulate an IP 
network where the c h p l  device will run over TCP/IP as a 
replacement. Understanding the performance implication of 
this decision is also important for applications. 

The c h q  device results in figwe 4 show that good per- 
formance is possible, particularly for large messages. There 
is a cross-over point where communication between proces- 
sors on the same CPU board falls behind processor commu- 
nication across boards for messages larger than 16 KJ3ytes. 
We have no speculation as to why this cross over occurs at 
this point. We do know that for our adaptive meshing prob- 
lem we regularly send messages as large as 35 MJ3ytes in 
size so our simulations will select processors one at a time, 
one board at a time. 

Regarding the c h p l  device, commonly associated with 
the IP protocol, there are steps one can take to actually send 
IP traffic over Myrinet and that is what we have done. This 
is generally a matter of building MPI with the chp4 device 
and ensuring that the Myrinet configuration files and system 
host tables are set up properly. This gives an improvement 
over the Ethernet cables and the performance is essentially 
independent of the processor configuration chosen. This ar- 
rangement allows one to use the cluster reliably, but not up 
to its full potential. 

Figure 5. Muzzle-brake shock tube mesh with initial 
mesh partitioning and redistribution among eight pro- 
cessors. 

4.1 Analyzing the Muzzle-Brake 

Figure 5 shows a muzzle-brake shock tube mesh with 
its initial partitioning and redistribution among processors. 
We repeated the simulations from [7 J using the new Myrinet 
X2000 and have included the combined results in figure 6. 
The initial mesh contains just 34,214 elements, but after 
three adaptive refinements the new mesh, shown in figure 7, 
contains 1,264,443 elements. 

What is clear is that for a small number of processors the 



Figure 6. Performance after three adaptive refine- 
ments of the muzzle-brake mesh. 

Beowulf cluster performs much better than the Origin for 
this problem. As the number of processors is increased all 
configurations show some scalability, but the Origin outper- 
forms the cluster. One would suspect that a fast Myrinet 
network would show an even greater improvement over the 
100BaseT Ethernet. This is misleading, however, because 
for this specific mesh the communication performance is not 
dominant. 

A breakdown of the time spent in mesh migration, which 
includes partitioning and load balancing, compared to creat- 
ing new elements by adaptive refinement shows that much 
more time is spent in the AMR process. On the Beowulf 
cluster using Myrinet - 182s and 4 6 s  are spent in creating 
new elements and migrating them respectively. Similarly, 
-98s and -22s are respectively spent in these stages on the 
Origin. In fact, once the coarse elements have been redis- 
tributed the new elements are created locally so no commu- 
nication is required. This implies that improvements in the 
network will not significantly impact overall performance 
for this specific problem. 

4.2 Analyzing an Earthquake Mesh 

Figure 8 shows the performance for an earthquake mesh 
generation where communication is more dominant. These 
results show a nearly 50% performance improvement for 
the cluster under Myrinet. The initial mesh only contains 
1,316 elements where 554,141 elements are created after 
three refinements. This example shows how a change in 
the problem description can impact performance for appli- 
cations that have irregular characteristics. 

Another important point, however, regards improve- 
ments in algorithm design for communication on clusters. 

Flgure 7. Performance after three adaptive refine- 
ments of the shaft section of the muzzle-brake mesh. 

This is also shown in figure 8 where the migration time is 
measured for 8 processors based on old and new communi- 
cation algorithm techniques. The original algorithms set up 
communication schedules based on processors sending and 
receiving messages directly as needed. That approach as- 
sumed that good performance can be achieved by matching 
communication operations exactly. Since the communica- 
tion schedule is irregular processors managed non-uniform 
message passing activities, but the volume of data trans- 
ferred was limited to only what was required among proces- 
sors that communicate. 

The new communication algorithm is much more scal- 
able for large systems in that a tree-based pair-wise ex- 
change algorithm is used. This algorithm works on any 
number of processors, not just a power of two. It is unique in 
that is guarantees that a minimal number of exchanges will 
be performed-meaning that the algorithm can determine if 
a processor has already received the data it needs and skip 
communication operations as necessary. The volume of data 
tends to grow with such algorithms as exchanges are per- 
formed, but this algorithm can also determine when data 
need not be included in future pairwise exchanges and it will 
remove such data from future operations. It is designed to 
take advantage of networks supporting full-duplex commu- 
nication. 

Although for tightly-coupled networks this algorithm 
will work well, it is very well structured for clusters that 
have slower networks, as seen in figure 8 for the lOOBaseT 
Beowulf network. When Myrinet is applied the results 



Flgure 8. Performance after three adaptive refinements of an earthquake mesh among 32 processors where Myrinet 
network upgrade affects overall performance. Also shown is the migration stand-alone timing due to message passing 
algorithm improvements for 8 processors. 

are even more dramatic. All of the performance results in 
this paper are based on using the new communication algo- 
rithms. 

Flgum 9. Adaptive refinement, repartitioning, and 
migration of the artery mesh segment containing 1.8 
million elements. 

4.3 Analyzing an Artery Mesh 

Returning to our artery mesh figure 9 shows the adap- 
tive refinement of a small section that creates 1.8 million el- 
ements from the initial mesh of 1.1 million elements. Fig- 
ure 10 shows again how performance can vary between the 
Myrinet-basedBeowulf cluster and the SGI Origin 2000. In 
this example we used 50 processors since the GM messag- 
ing layer would occasionally fail in message send operations 
when all 52 processors were used. 

The first instance in figure 10 adaptively refined a small 
region and analysis showed that the time spent in migration 
and adaptive refinement were nearly equal across both ma- 
chines. In the second instance the region refined was in- 
creased, creating about 4.5 million elements. For the cluster 
both the migration and adaptive refinement time increased 
significantly, but more time was spent in adaptive refinement 
than migration. This pattern was also true for the SGI Ori- 
gin, but both migration and refinement were faster than on 
the cluster. 

In the third instance the entire artery was refined creat- 
ing 7.4 million elements. In this case, where one would ex- 
pect the cluster to perform poorly, it actually outperformed 
the SGI Origin. Analysis showed that the migration time for 
the cluster was slower than for the Origin while the adaptive 
meshing time was faster for the cluster than for the Origin. 
Overall, this gave the cluster better performance in this case. 

We also examined the message passing structure more 
closely for these problem instances. Although the new pair- 
wise message exchange algorithm was used for mesh mi- 



Figure 10. Performance comparison for adaptive re- 
finement of artery mesh for various region sizes on 50 
processors. 

gration we decided to analyze the mapping for processor 
communication exactly. This included measuring, for each 
processor, the number of other processors that need to send 
data as well as the number of elements each processor must 
receive in order to achieve load balance during migration. 
Neither of these measurements allowed specific conclusions 
to be drawn about the performance differences among these 
problems cases. In fact, the data interaction was fairly 
well balanced for all problem sizes under both architectures. 
There were instances, however, where the number of ele- 
ments a small number of processors must receive for load 
balance was about 5 times larger than the average, but this 
was characteristic of all test cases. 

This would suggest that characteristics of the problem 
may determine performance much more than features of the 
network, and that for irregular problems this is difficult to 
characterize. 

Although it is risky to speculate for irregular problems, 
we are aware that the balance between CPU speed and 
the time to fetch data from memory does play a role in 
performance. The pipelined super-scalar architecture of 
the R12000 processors on the Origin are only clocked at 
300 Mhz, but the processor to memory communication in- 
teraction is very well balanced leading to good single-node 
performance. The Pentiumarchitecture, historically, has not 
been balanced as well potentially causing memory accesses 
to fall behind high CPU clock rates. This has been seen in 
calculations involving highly structured matrix operations 
where the ability to control how data is accessed can be con- 
trolled. Although adaptive meshing is very irregular by na- 

ture, the possibility exists that for certain problems the CPU 
to memory interaction dominates performance more than 
the network on a cluster. 

5. Conclusion 

As one would expect, the upgrade of a network mainly 
benefits problems with large message passing requirements. 
On point-to-point ping-pong tests using Myricom's MPICH 
under the GM messaging layer we can achieve about 
190 MBytesh, or about 1.5 GBitds, for sufficiently large 
messages. On an SMP where shared-memory communica- 
tion is possible, we also observed a crossover where com- 
munication on the dual-CPU board falls behind communica- 
tion across boards for large messages. Ultimately the ability 
to sustain network performance for large messages is more 
important for users running large applications. 

Another useful performance measurement is the perfor- 
mance of the network where multiple pairs of processors are 
exchanging messages simultaneously. This indicates net- 
work performance under a load. Figure 11 shows rather dra- 
matic results of this test for 16 processors using Myrinet 
and MPICH-GM. The error bars also show the minimum 
and maximum range of data transfers values we experienced 
during this test. For large messages, the average transmis- 
sion rates clearly fall toward the low side. 

Our new migration algorithms perform such pair-wise 
exchanges and we can see that under a load the performance 
drops significantly. We have also included results from 
the ping-pong test when multiple processors are perform- 
ing the test simultaneously. This shows that for one-way 
(half-duplex) message transfers occurring simultaneously 
that performance drops to about 100 MBytes/s for average 
size messages and falling sharply for large messages. More 
importantly, for full-duplex message transfers between pro- 
cessors where we would expect good performance, we may 
only see about 30 MBytes/s on average. This most likely 
is a contributing factor to the performance of our adaptive 
meshing application and may also explain why improve- 
ments over our Ethernet connection are limited. In these 
tests processor pairs communicate across boards, not within 
the same board. 

When the pair-wise exchange test is performed again, 
where dual-processors communicate within the same board, 
the results improve. For the ping-pong tests an average of 
125 MBytes/s is achieved. The fullduplex exchange test 
shows an average of 120 MBytes/s. 

One caveat regarding performance comparisons between 
the Beowulf SMP Cluster and the SGI Origin 2000 for our 
adaptive mesh problem is that the simulation results are not 
precisely identical. In particular, the ParMetis partitioner 
applied in the dynamic load balancing stage, produces dif- 
ferent partitionings on each machine [4]. (This is a side- 



Figure 1 1. Performance comparison for network swap test where processor pairs exchange data simultaneously. 

effect of the random number generation process.) This will 
affect the adaptive refinement process and may affect com- 
parative timings, but this should be not too significant. 

We have also noticed that performance varies among 
these machines as simulations are repeated. As the SGI Ori- 
gin is a shared resource this effect is expected. The Beowulf 
runs were performed in isolation, but timings also varied un- 
der Myrinet and MPICH-GM. In some cases, on both sys- 
tems, the variance was significant. We always used the best 
performance numbers in our reported results. 

Actually getting to the point where programs could run 
fairly reliably using the X2000 switch, MPICH-GM, and 
RedHat Linux was not a small effort. As early users we can 
run applications on our system, but some instability still ex- 
ists. We have seen improvements resulting from access to 
software fixes and patches from Myricom support. As this 
continues we suspect that we should see increased reliabil- 
ity. 

In the end, the network is just one contributor to the com- 
bination of factors that affect performance and usability of 
the cluster. Our experience is that for functionality tests 
good performance can be achieved using X2OOO but the ef- 
fective performance improvement depends largely on char- 
acteristics of the application. 
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